
J Glob Optim (2008) 41:61–73
DOI 10.1007/s10898-007-9166-9

An efficient solver for weighted Max-SAT

Teresa Alsinet · Felip Manyà · Jordi Planes

Received: 3 July 2006 / Accepted: 18 May 2007 / Published online: 29 June 2007
© Springer Science+Business Media LLC 2007

Abstract We present a new branch and bound algorithm for weighted Max-SAT, called
Lazy which incorporates original data structures and inference rules, as well as a lower
bound of better quality. We provide experimental evidence that our solver is very competi-
tive and outperforms some of the best performing Max-SAT and weighted Max-SAT solvers
on a wide range of instances.

Keywords Max-SAT · Weighted Max-SAT · Branch and bound · Lower bound · Heuristics ·
Data structures

1 Introduction

In recent years we have seen an increasing interest in propositional satisfiability (SAT) that has
led to the development of fast and sophisticated complete SAT solvers like Chaff [29], SATO
[27], and Satz [15], which are based on the well-known Davis–Putnam–Logemann–Loveland
(DPLL) procedure [6]. Such algorithms determine whether there is a truth assignment that
satisfies the input CNF formula.

A Conjunctive Normal Form (CNF) formula is a conjunction of clauses, each clause being
a disjunction of literals, and each literal being a propositional variable or its negation. A truth
assignment is a mapping that assigns to each propositional variable either the value 0 (for
false) or the value 1 (for true), and it satisfies a clause if it satisfies at least one of its literals
and satisfies a CNF formula if it satisfies all its clauses.

T. Alsinet · J. Planes
Computer Science Department, Universitat de Lleida, Jaume II, 69, 25001 Lleida, Spain
e-mail: tracy@diei.udl.es

J. Planes
e-mail: jplanes@diei.udl.es

F. Manyà (B)
Artificial Intelligence Research Institute (IIIA, CSIC), Campus UAB, 08193 Bellaterra, Spain
e-mail: felip@iiia.csic.es

123

62 J Glob Optim (2008) 41:61–73

Unfortunately, SAT algorithms are not able to solve the optimization version of SAT: Max-
SAT. Given a CNF formula φ, Max-SAT consists of finding a truth assignment that minimizes
the number of unsatisfied clauses in φ. A more general and related problem is weighted Max-
SAT. In this case, a positive integer, called weight, is associated with each clause and the
problem consists of finding a truth assignment that minimizes the sum of weights of unsat-
isfied clauses. A weight represents the significance of the clause or an induced penalty if it
is violated.

To the best of our knowledge, there are only four exact algorithms for weighted Max-SAT
that are variants of the DPLL procedure. The first was developed by Wallace and Freu-
der [25] (WF), the second was developed by Borchers and Furman [4] (BF), the third,
which is based on BF, was developed by Alsinet et al. [2] (AMP), and the fourth was
developed by Xing and Zhang [26] (XZ). All of them are depth-first branch and bound
algorithms. The first was implemented in Lisp, while the rest were implemented in C and
are publicly available. A weighted Max-SAT solver that encodes the input instance as a
weighted constraint network and solves that network with a state-of-the-art weighted Max-
CSP solver was developed by Givry et al. [8] (toolbar). There are other exact algorithms for
weighted Max-SAT, but based on mathematical programming techniques [5,13,14]. There
are also two exact DPLL-based algorithms specialized to solve Max-2-SAT (they do not
solve weighted Max-2-SAT): one is due to Zhang et al. [28] (ZSM), and the other to Alber
et al. [1] (AGN).

An alternative to exact methods is provided by heuristic and approximation algorithms;
they cannot guarantee that the solution found is optimal, but can solve instances that are
beyond the reach of the existing exact Max-SAT algorithms. Furthermore, they can be used
to compute good quality upper bounds in Max-SAT branch and bound solvers [4,26]. One of
the first heuristic algorithms for Max-SAT is the steepest ascent, mildest descent approach by
Hansen and Jaumard [10]. Other relevant heuristic algorithms are the reactive search approach
by Battiti and Protasi [3], and the Greedy Randomized Adaptive Search Procedures (GRASP)
approach to Max-SAT by Resende et al. [20,21]. In the SAT community, variants of the local
search algorithms GSAT [23] and WalkSAT [22] have been used to solve Max-SAT; see [24]
for a survey. Approximations algorithms based on semidefinite programming are described
in Ref. [7,9].

In this paper we first present a new branch and bound algorithm for weighted Max-SAT
which incorporates original data structures and inference rules, as well as a lower bound
of better quality. We then report on an experimental investigation we have conducted in
order to evaluate our solver on (weighted) Max-SAT instances. The results obtained provide
experimental evidence that our solver is very competitive and outperforms some of the best
performing (weighted) Max-SAT solvers on a wide range of instances.

Our new solver, which we call Lazy , differs from previous solvers in the data struc-
tures used to represent and manipulate CNF formulas, in the preprocessing simplification
techniques applied, in the lower bound computation method, and in the variable selection
heuristic (which is static in our solver).

2 Preliminaries

A weighted clause is a pair (Ci, wi), where Ci is a disjunction of literals and wi , its weight,
is a positive integer. A weighted CNF formula is a conjunction of weighted clauses. In the
following when we say clause we refer to a weighted clause, and when we say formula we
refer to a weighted CNF formula.

123

J Glob Optim (2008) 41:61–73 63

The weighted Max-SAT problem for a formula φ is the problem of finding an assign-
ment of values to propositional variables that minimizes the sum of weights of unsatisfied
clauses (or equivalently, that maximizes the sum of weights of satisfied clauses). When all the
clauses of a formula φ have weight 1, we usually omit the weights. The Max-SAT problem is
the weighted Max-SAT problem restricted to formulas whose clauses have weight 1, and is
defined as the problem of finding an assignment of values to propositional variables that sat-
isfies as many clauses as possible (i.e., minimizes the number of unsatisfied clauses). When
all the clauses have at most k literals per clause, (weighted) Max-SAT is called (weighted)
Max-k-SAT.

Finally, we introduce the mixed integer programming (MIP) formulation of weighted
Max-SAT defined in Ref. [20]. That formulation is used in the experimental investigation to
compare our solver with a MIP solver.

Let φ = (C1, w1) ∧ · · · ∧ (Cm,wm) be a weighted Max-SAT instance over the the prop-
ositional variables p1, . . . , pn. Let yj = 1 if variable pj is true and yj = 0, otherwise.
Furthermore, the continuous variable zi = 1 if clause Ci is satisfied and zi = 0, otherwise.
The MIP formulation of the weighted Max-SAT instance φ is:

max F(y, z) =
m∑

i=1

wizi

subject to

∑
j∈I+

i
yj + ∑

j∈I−
i
(1 − yj) ≥ zi i = 1, . . . , m,

yi ∈ {0, 1} i = 1, . . . , n,

zi ∈ {0, 1} i = 1, . . . , m,

where I+
i denotes the set of unnegated variables in clause ci and I−

i is the set of negated
variables in Cj .

3 A basic solver for weighted Max-SAT

The space of all possible assignments for a propositional formula φ can be represented as
a search tree, where internal nodes represent partial assignments and leaf nodes represent
complete assignments. A basic branch and bound algorithm for weighted Max-SAT explores
the search tree in a depth-first manner. At every node, the algorithm compares the sum of the
weights of the clauses unsatisfied by the best complete assignment found so far—called upper
bound (UB)—with the sum of the weights of the clauses unsatisfied by the current partial
assignment (unsat) plus an underestimation of the sum of the weights of the clauses that
will become unsatisfied if we extend the current partial assignment into a complete assign-
ment (underestimation). The sum unsat + underestimation is called lower bound (LB).
Obviously, if UB ≤ LB, a better assignment cannot be found from this point in search. In
that case, the algorithm prunes the subtree below the current node and backtracks to a higher
level in the search tree. If UB > LB, it extends the current partial assignment by instantiating
one more variable; which leads to the creation of two branches from the current branch:
the left branch corresponds to instantiating the new variable to false, and the right branch
corresponds to instantiating the new variable to true. In that case, the formula associated with
the left (right) branch is obtained from the formula of the current node by deleting all the
clauses containing the literal ¬p (p) and removing all the occurrences of the literal p (¬p);

123

64 J Glob Optim (2008) 41:61–73

Fig. 1 A basic branch and bound algorithm for weighted Max-SAT

i.e., the algorithm applies the one-literal rule [16]. The solution to weighted Max-SAT is the
value that UB takes after exploring the entire search tree.

Figure 1 shows the pseudo-code of a basic branch and bound algorithm for weighted
Max-SAT. We use the following notation:

• sum-weights-empty-clauses(φ) is a function that returns the sum of weights associated
with the empty clauses of φ. Empty clauses are unsatisfied by any truth assignment.

• LB(φ) is a lower bound for φ.
• UB is an upper bound of the sum of weights of unsatisfied clauses in an optimal solution.

We assume that the initial value is ∞.
• select-variable(φ) is a function that returns a variable of φ through a heuristic

procedure.
• φp (φ¬p) is the formula obtained by applying the one-literal rule to φ using the literal p

(¬p).

State-of-the-art weighted Max-SAT solvers implement such a basic algorithm augmented
with preprocessing techniques, the computation of an initial upper bound by a local search
algorithm, clever variable selection heuristics, powerful inference techniques, lower bounds
of good quality, and suitable data structures.

4 Lazy: a new weighted Max-SAT solver

Lazy implements the previous basic branch and bound algorithm augmented with a number
of improvements that are described below: preprocessing techniques, inference methods,
lower bound computation, variable selection heuristics, and data structures.

4.1 Preprocessing

Before starting to explore the search tree, Lazy obtains an upper bound on the sum of the
weights of unsatisfied clauses in an optimal solution using a variant of the local search pro-
cedure GSAT [23]. This technique was first used by Borchers and Furman in their solver BF
[4] and helps accelerate the search for an optimal solution.

Besides, Lazy simplifies the input formula by applying a novel resolution refinement:
It replaces every pair of binary clauses (p1 ∨ p2, w1) and (¬p1 ∨ p2, w2) with the clauses
(p2, min(w1, w2)), (p1 ∨p2, w1 −min(w1, w2)), and (¬p1 ∨p2, w2 −min(w1, w2)). That
resolution refinement for unweighed Max-SAT is defined as follows: every pair of binary
clauses p1 ∨p2 and ¬p1 ∨p2 can be replaced with the unit clause p2. The advantage of that

123

J Glob Optim (2008) 41:61–73 65

preprocessing is that new unit clauses are generated. As we will show in the experimental
investigation, it gives rise to substantial performance improvements.

4.2 Inference

When branching is done, branch and bound algorithms for Max-SAT apply the one-literal rule
(simplifying with the branching literal) instead of applying unit propagation (i.e., the repeated
application of the one-literal rule until a saturation state is reached) as in most SAT solvers.
If unit propagation is applied at each node, the algorithm can return a non-optimal solution.
For example, if we apply unit propagation to the unweighted clauses p∧¬q ∧(¬p∨q)∧¬p

using the unit clause ¬p, we derive one empty clause while if we use the unit clause p, we
derive two empty clauses. However, when the difference between the lower bound and the
upper bound is one, unit propagation can be safely applied, because otherwise by fixing to
false any literal of any unit clause we reach the upper bound. This technique, which Lazy
incorporates, was developed by Borchers and Furman [4].

Lazy also incorporates the weighted complementary unit-clause (CUC) rule: The sum of
the weights of unsatisfied clauses in an optimal solution of a formula φ ∧ (p,w1)∧ (¬p,w2)

that contains two complementary unit clauses ((p;w1) and (¬p;w2)) is equal to min(w1, w2)

plus the sum of the weights of unsatisfied clauses in an optimal solution of the formula
φ ∧ (p,w1 − min(w1, w2)) ∧ (¬p,w2 − min(w1, w2)).

The unweighted CUC rule was defined in Ref. [18]: The number of unsatisfied clauses
in an optimal solution of a formula φ ∧ p ∧ ¬p is equal to 1 plus the number of unsatisfied
clauses in an optimal solution of φ.

4.3 Lower bound computation

Wallace and Freuder [25] defined a lower bound computation method for Max-SAT that can
be generalized to weighted Max-SAT as follows:

LB(φ) = unsat (φ) +
∑

p occurs in φ

min(ic(p), ic(¬p)), (1)

where φ is the formula associated with the current partial assignment, unsat (φ) is the sum of
the weights of the clauses unsatisfied by the current partial assignment, and ic(p) (ic(¬p))—
inconsistency count of p (¬p)—is the sum of the weights of the clauses that will become
unsatisfied if the current partial assignment is extended by fixing p to true (false). Note that
ic(p) (ic(¬p)) coincides with the sum of the weights of unit clauses of φ that contain ¬p

(p).
The lower bound of Lazy , LBLazy, is of better quality and can be understood as the

weighted version of the lower bound of Wallace and Freuder (LB) extended with a new rule
that we call star rule. We define the star rule for unweighted Max-SAT as follows: If a formula
contains a clause of the form l1 ∨ · · · ∨ lk , where l1, . . . , lk are literals, and k unit clauses
of the form ¬l1, . . . ,¬lk , then the lower bound can be incremented by one. In the weighted
case, we only consider clauses of length two,1 and define the rule as follows: If a formula
contains a binary clause of the form (l1 ∨ l2, w1) and two unit clauses of the form (¬l1, w2)

and (¬l2, w3), then the lower bound can be incremented by w = min(w1, w2, w3) and those
clauses have to be replaced with (l1 ∨ l2, w1 − w), (¬l1, w2 − w), and (¬l2, w3 − w).

1 For longer clauses the star rule did not lead to performance improvements in our experimental investigation.

123

66 J Glob Optim (2008) 41:61–73

Fig. 2 Pseudo-code of the lower bound computation method of Lazy

The pseudo-code of LBLazy, for an input formula φ, is shown in Fig. 2. Note that after
applying our variant of the star rule, Lazy applies the lower bound of Wallace and Freuder
(LB) to the resulting formula (line 11 of the pseudo-code).

It is worth to mention that we took the name star rule from Ref. [18]. The star rule of
Niedermeier and Rossmanith is not used to compute lower bounds. It simply states that the
minimum number of unsatisfied clauses of the formula ¬l1 ∧ · · · ∧ ¬lk ∧ (l1 ∨ · · · ∨ lk) ∧
(l1 ∨ · · · ∨ lk) is 1.

4.4 Variable selection heuristic

The variable selection heuristic of Lazy is static, and computed before applying the pre-
processing. It uses heuristic MOMS [19] adapted to weighted Max-SAT. Lazy orders the
variables by the sum of the weights associated with the clauses of minimum size in which
the variable appears. Variables are instantiated following that ordering.

4.5 Data structures

Existing Max-SAT and weighted Max-SAT solvers use adjacency lists to represent formulas,
and their variable selection heuristics are typically dynamic. Lazy uses a static variable
selection heuristic that allows us to implement extremely efficient data structures for repre-
senting and manipulating formulas. In this section, we first describe the data structures of a
simpler solver. Based on that description, we then describe the data structures of Lazy.

If we would like to define data structures for the basic solver described in Sect. 3,
incorporating the weighted version of the lower bound of Wallace and Freuder, we should
take into account that the solver is only interested in knowing when a clause has become
unit or empty. Thus, given a clause with four variables, it is not necessary to perform any
operation in that clause until three of the variables have been instantiated; i.e., the evaluation
of a clause with k variables can be delayed until k − 1 variables have been instantiated.

In that case, and using a static variable selection heuristic, we could define the following
data structures: Clauses are ordered lists of literals (literals are ordered following the order
used to instantiate variables) and there is a pointer to the penultimate literal and to the last
literal of the clause. When a variable p is fixed to true (false), the clauses whose penultimate
literal is ¬p (p) are evaluated. If there is an instantiated literal in the clause which is true, the
clause becomes satisfied; otherwise, a unit clause with the same weight, whose only literal
is the last literal of the clause, is derived. This approach has two advantages: the cost of
maintaining that data structure when the solvers backtracks is constant (we do not have to
undo pointers like in adjacency lists) and, at each step, we evaluate a minimum number of

123

J Glob Optim (2008) 41:61–73 67

clauses (we do not evaluate all the clauses that contain the variable we are instantiating, we
only evaluate the clauses in which the penultimate literal contains that variable). In addition,
we also maintain an array that contains, for each literal, the sum of the weights of the unit
clauses in which that literal appears. This array is used to derive empty clauses and to com-
pute lower bounds. This array is the only data structure that the algorithm maintains when it
backtracks.
Lazy , as considers the star rule in the computation of the lower bound, has pointers,

besides to the last and penultimate literals, to the second from last literal of each clause. This
way, it can maintain an array of binary clauses in order to compute the new lower bound
efficiently.

5 Experimental results

We conducted an experimental investigation in order to compare the performance of Lazy
with the following state-of-the-art solvers:

• BF [4]: It is a branch and bound weighted Max-SAT solver which uses MOMS as dynamic
variable selection heuristic, and it does not consider any underestimation in the lower
bound. Formulas are represented using adjacency lists. It was developed by Borchers and
Furman in 1999.

• AMP [2]: It is a branch and bound Max-SAT solver based on BF that incorporates the
lower bound of Wallace & Freuder, and uses the Jeroslow-Wang rule [12]2 as dynamic
variable selection heuristic. It was developed by Alsinet, Manyà and Planes in 2003.

• XZ [26]: It is a branch and bound weighted Max-SAT solver developed by Xing and
Zhang in 2004. We used the second release of this solver which is known as MaxSolver.

• Toolbar [8]: It is a weighted Max-SAT solver that encodes the input instance as a
weighted constraint network and solves that network with a state-of-the-art weighted
Max-CSP solver with a sophisticated and good performing lower bound. It was devel-
oped by Givry, Larrosa, Meseguer, and Schiex in 2003.

• AGN [1]: It is a branch and bound Max-2-SAT solver; the weighted version is not available.
It was developed by Alber, Gramm, and Niedermeier in 1998.

• ZSM [28]: It is a branch and bound Max-2-SAT solver; the weighted version is not avail-
able. It was developed by Zhang, Shen, and Manyà in 2003.

• CBC: It is an open source branch and cut MIP solver developed within the COIN-OR
project.3 We used version 1.1.0.

As benchmarks we used randomly generated (weighted) Max-2-SAT and (weighted) Max-
3-SAT instances, as well as all the weighted Max-SAT instances solved in the Max-SAT
Evaluation 2006 4 and the modified instances of the class jnh from the 2nd DIMACS imple-
mentation challenge [11] used in [20,21]. Unweighted random Max-2-SAT (Max-3-SAT)
instances were generated using the method described in [17]. Weighted random Max-2-SAT
(Max-3-SAT) instances were generated as unweighted random Max-2-SAT (Max-3-SAT)
instances except that each clause was given a random integer weight uniformly distributed

2 Given a formula φ, for each literal l of φ the following function is defined: J (l) = l∈C∈φ2−|C|, where |C|
is the length of clause C. It selects a variable p of φ among those that maximize J (p) + J (¬p).
3 The COIN-OR (Computational Infrastructure for Operations Research) project is available at
http://www.coin-or.org/
4 http://www.iiia.csic.es/∼maxsat06/

123

68 J Glob Optim (2008) 41:61–73

 0.1

1

 10

 100

 180 240 300 360 420 480

tim
e

(lo
g

sc
al

e)

number of clauses

BF
Lazy

Fig. 3 Experimental results for 30-variable Max-3-SAT instances. Mean time (in seconds)

between one and ten. This generation method was used, among others, by Refs. [4,26]. The
experiments were performed on a 2 GHz Pentium IV with 512 Mb of RAM under Linux.

In our first experiment, we evaluated the relevance of defining lazy data structures to get
substantial performance improvements. To this end, we compared BF and Lazy using a sim-
ple variable selection heuristic: variables are instantiated in lexicographical order. Moreover,
we removed all the improvements we introduced into Lazy and replaced LBLazy with the
lower bound of BF. This way, we have that BF and Lazy traverse the same search tree. Fig. 3
shows the results obtained when solving sets of randomly generated Max-3-SAT instances
with 30 variables and a different number of clauses. We generated sets for 180, 240, 300,
360, 420, and 480 clauses, where each set had 500 instances. We observe that this modified
version of Lazy is about five times faster than BF when both solvers traverse the same search
tree.

In our second experiment, we generated sets of random Max-2-SAT instances with 50
variables and a different number of clauses. Each set had 500 instances. The results of solv-
ing such instances with CBC, BF, XZ, AMP, Toolbar, ZSM, AGN, and Lazy are shown in
Fig. 4. Along the horizontal axis is the number of clauses, and along the vertical axis is the
mean time (in seconds) needed to solve an instance of a set. Notice that we use a log scale
to represent run-time. Observe that Lazy outperforms the rest of solvers in almost all the
instances, even ZSM and AGN that are specifically designed to solve Max-2-SAT instances.
Toolbar is very competitive and outperforms Lazy on large clauses/variables ratios. For XZ,
we consider only formulas with less than 1,000 clauses because the available version of XZ
does not deal with bigger formulas.

In our third experiment, we generated sets of random Max-3-SAT instances with 50 vari-
ables and a different number of clauses. Each set had 300 instances. The results of solving
such instances with CBC, BF, AMP, Toolbar, ZX, and Lazy are shown in Fig. 5. We observe
that Lazy outperforms the rest of solvers. The second best performing solver is Toolbar.
CBC, BF, AMP, and XZ are much worse than the rest of solvers.

In our fourth experiment, we generated sets of random weighted Max-2-SAT and weighted
Max-3-SAT instances with 50 variables and a different number of clauses. Each set had 500
instances. The results of solving such instances with CBC, BF, AMP, Toolbar, XZ, and Lazy
are shown in Figs. 6 and 7. We observe that Lazy is the best performing solver for weighted

123

J Glob Optim (2008) 41:61–73 69

 0.01

 0.1

1

 10

 100

 1000

 400 800 1200 1600 2000 2400 2800

tim
e

(lo
g

sc
al

e)

number of clauses

Max-2-SAT - 50 variables

BF
CBC
AMP
AGN
ZSM

XZ
Toolbar

Lazy

Fig. 4 Experimental results for 50-variable Max-2-SAT instances. Mean time (in seconds)

Fig. 5 Experimental results for
50-variable Max-3-SAT
instances. Mean time (in seconds)

 0.1

1

 10

 100

 1000

 300 400 500 600 700 800 900

tim
e

(lo
g

sc
al

e)

number of clauses

Max-3-SAT - 50 variables

CBC
BF

AMP
XZ

Toolbar
Lazy

Max-2-SAT and weighted Max-3-SAT. Toolbar is competitive in both cases, while CBC,
BF, and AMP are not competitive. It is worth mentioning that weighted Max-CSP has been
intensively studied in the constraint programming community during the last decade, while
DPLL-based solvers for weighted Max-SAT have only recently been investigated in the SAT
community.

In our fifth experiment, we compared solvers CBC, BF, AMP, Toolbar, and Lazy on the
instances from the Max-SAT Evaluation 2006 and the modified instances of the class jnh.
This way, we evaluated the solvers on more structured instances. The results obtained are
shown in Table 1, where we give, for each set of instances and for each solver, the mean
time of the instances that were solved within 1,800 s, as well as the total number of solved
instances (in brackets).5 We observe that Lazy outperforms the rest of solvers on most of
the sets of instances, providing empirical evidence that it also has a good performance profile
on more structured instances.

5 The set of instances not solved by any solver is not shown.

123

70 J Glob Optim (2008) 41:61–73

Fig. 6 Experimental results for
50-variable weighted Max-2-SAT
instances. Mean time (in seconds)

 0.01

 0.1

1

 10

 100

 1000

 400 600 800 1000 1200 1400 1600

tim
e

(lo
g

sc
al

e)

number of clauses

Weighted Max-2-SAT - 50 variables

BF
CBC
AMP

Toolbar
XZ

Lazy

Fig. 7 Experimental results for
50-variable weighted Max-3-SAT
instances. Mean time (in seconds)

 0.01

 0.1

1

 10

 100

 1000

 300 400 500 600 700 800 900 1000

tim
e

(lo
g

sc
al

e)

number of clauses

Weighted Max-3-SAT - 50 variables

CBC
BF

AMP
XZ

Toolbar
Lazy

In our sixth experiment, we analyzed the impact of the improvements we have incorpo-
rated into Lazy on sets of random weighted Max-2-SAT instances with 50 variables and
a different number of clauses. Each set had 500 instances. The results obtained are shown
in Figs. 8 and 9. Figure 8 shows the mean time needed to solve an instance while Fig. 9
shows the mean number of backtracks. Basic refers to the basic solver explained in Sect. 3
augmented with the weighted version of the lower bound of Wallace and Freuder and the
computation of the initial upper bound with GSAT; Lower bound refers to Basic augmented
with the lower bound LBLazy; Resolution refinement refers to Basic augmented with the pre-
processing based on resolution; Unit propagation refers to Basic augmented with the safe
application of unit propagation explained in Sect. 4.2; and CUC refers to Basic augmented
with the weighted CUC rule.

From the results obtained we draw the following conclusions that help understand the
good performance profile of Lazy :

123

J Glob Optim (2008) 41:61–73 71

Table 1 Experimental results for benchmarks in the MAX-SAT Evaluation 2006 for weighted instance

Set Name #Instances BF AMP XZ CBC Toolbar Lazy

Auction (paths) 30 416.5(9) 244.3(9) 926.6(6) 146.4(15) 95.4(9) 261.3(15)

Auction (regions) 30 1.5(1) 0.8(1) (0) 299.9(26) 237.7(30) 5.8(14)

Auction (schedulling) 30 10.7(11) 5.8(11) (0) 544.2(8) 454.3(15) 217.3(24)

Max-Clique (brock) 12 (0) (0) (0) 717.4(1) 475.7(3) 589.4(2)

Max-Clique (c-fat) 7 (0) (0) (0) (0) 304.0(7) (0)

Max-Clique (hamming) 6 0.3(2) 0.1(2) 0.1(1) (0) 39.2(4) 27.5(4)

Max-Clique (johnson) 4 51.7(3) 28.4(3) 0.2(2) (0) 184.6(3) 458.9(3)

Max-Clique (keller) 2 (0) (0) (0) (0) 291.9(1) 623.9(1)

Max-Clique (MANN a) 4 3.5(1) 2.1(1) 0.7(1) (0) 0.6(1) 19.4(1)

Max-Clique (p hat) 12 (0) (0) (0) (0) 535.8(2) (0)

Max-Clique (sanr) 4 (0) (0) (0) (0) (0) 1,561.0(1)

Weighted Max-Cut (brock) 12 (0) 998.2(2) 1,157.0(5) 577.2(1) 260.2(12) 222.0(12)

Weighted Max-Cut (c-fat) 7 32.8(4) 196.6(5) 331.2(7) 123.0(6) 225.3(7) 289.8(7)

Weighted Max-Cut (hamming) 6 (0) 301.0(1) 1,457.1(5) (0) 352.6(2) 523.8(2)

Weighted Max-Cut (johnson) 4 92.4(1) 264.5(2) 0.54 (1) 43.9(1) 20.3(2) 15.0(2)

Weighted Max-Cut (keller) 2 (0) 293.0(1) (0) (0) 294.1(2) 233.8(2)

Weighted Max-Cut (p hat) 12 528.4(3) 146.1(8) 9.7(8) 90.1(6) 287.2(12) 139.5(12)

Weighted Max-Cut (san) 11 (0) 742.8(2) 1,238.3(6) 952.5(2) 543.1(9) 496.4(10)

Weighted Max-Cut (sanr) 4 (0) 289.5(1) 54.2(1) (0) 497.8(4) 321.7(4)

Weighted Max-Cut (random) 40 (0) (0) (0) (0) 626.7(11) 800.4(15)

Weighted Max-Cut (spinglass) 5 (0) (0) 611.5(3) 302.0(3) 2.1 (2) 3.1(2)

Max-One 45 1,042.2(1) 1,217.1(3) 117.8(4) 112.2(39) 276.3(4) 273.2(11)

Quasigroup Completion 25 2.3(10) 1.1(10) (0) 150.5(18) 83.3(5) 1,385.9(2)

Ramsey 48 3.6(31) 1.9(31) 46.5(35) (0) 49.0(29) 51.9(28)

Weighted CSP (DENSE LOOSE) 40 98.1(39) 57.1(39) 54.5(16) 378.6(29) 409.7(20) 638.1(2)

Weighted CSP (DENSE TIGHT) 60 (0) (0) 1,619.4(10) (0) 501.4(23) (0)

Weighted CSP (SPARSE LOOSE) 40 57.9(40) 32.7(40) 2.1(11) 237.0(34) 393.4(24) (0)

Weighted CSP (spot) 42 153.3(4) 73.6(4) (0) 133.9(8) 53.1(12) 113.3(5)

JNH 44 0.2(44) 0.2(44) 0.4(42) 315.5(41) 6.1(44) 625.2(27)

• The safe application of unit propagation explained in Sect. 4.2 does not seem to be useful
when a good quality lower bound is applied.

• The resolution refinement that we applied as preprocessing leads to significant improve-
ments on both time and backtracks.

• The CUC rule accelerates the computation of the lower bound because it reduces the
number of variables that the lower bound computation method must consider at each
node of the search tree.

• The lower bound of Lazy gives rise to important performance improvements compared
with the weighted version of the lower bound of Wallace and Freuder.

We believe that our results could be further improved by adapting the lazy data structures
defined in the paper to deal with dynamic variable selection heuristics, as well as by applying
more inference rules at each node of the search tree.

123

72 J Glob Optim (2008) 41:61–73

Fig. 8 Experimental results for
50-variable weighted Max-2-SAT
instances. Mean time (in seconds)

 0.001

 0.01

 0.1

1

 10

 100 200 300 400 500 600

tim
e

(lo
g

sc
al

e)

number of clauses

basic
CUC

Lower Bound
Resolution ref.

Unit propagation
Lazy

Fig. 9 Experimental results for
50-variable weighted Max-2-SAT
instances. Mean number of
backtracks

 100

 1000

 10000

 100000

 1e+06

 1e+07

 100 200 300 400 500 600

ba
ck

tr
ac

ks
 (

lo
g

sc
al

e)

number of clauses

basic
CUC

Lower Bound
Resolution ref.

Unit propagation
Lazy

Acknowledgements Research partially supported by projects TIN2006-15662-C02-02 and TIN2004-
07933-C03-03 funded by the Ministerio de Ciencia y Tecnología. The second author was supported by a
grant Ramón y Cajal.

References

1. Alber, J., Gramm, J., Niedermeier, R.: Faster exact algorithms for hard problems: a parameterized point
of view. In: Proceedings of the 25th Conference on Current Trends in Theory and Practice of Informatics.
LNCS, pp. 168–185. Springer, Berlin (1998)

2. Alsinet, T., Manyà, F., Planes, J.: Improved branch and bound algorithms for Max-SAT. In: Proceedings
of the 6th International Conference on the Theory and Applications of Satisfiability Testing. S. Margherita
Ligure – Portofino, Italy (2003).

3. Battiti, R., Protasi, M.: Reactive search, a history-sensitive heuristic for MAX-SAT. ACM J. Exp. Algo-
rithms, 2, Art. 2(1997)

4. Borchers, B., Furman, J.: A two-phase exact algorithm for MAX-SAT and weighted MAX-SAT prob-
lems. J. Combi. Optim 2, 299–306 (1999)

5. Cheriyan, J., Cunningham, W., Tunçel, L., Wang, Y.: A linear programming and rounding approach to
MAX-2-SAT. In: Johnson D., Trick M. (eds.), Cliques, Coloring and Satisfiability, Vol. 26 of DIMACS,
pp. 395–414. American Mathematical Society, Providence, USA (1996)

123

J Glob Optim (2008) 41:61–73 73

6. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commun.
ACM 5, 394–397 (1962)

7. Feige, U., Goemans, M.: Approximating the value of two proper proof systems, with applications to
MAX-2SAT and MAX-DICUT. In: Proceedings of the 3rd Israel Symposium on Theory of Computing
and Systems, pp. 182–189. Tel Aviv, Israel (1995)

8. de Givry, S., Larrosa, J., Meseguer, P., Schiex, T.: Solving Max-SAT as weighted CSP. In: Proceedings
of the 9th International Conference on Principles and Practice of Constraint Programming, CP-2003,
Kinsale, Ireland, LNCS 2833, pp. 363–376. Springer, Berlin (2003)

9. Goemans, M., Williamson, D.: Improved approximation algorithms for maximum cut and satisfiability
problems using semidefinite programming. J. Assoc. Comput. Mach 42(6), 1115–1145 (1995)

10. Hansen, P., Jaumard, B.: Algorithms for the maximum satisfiability problem. Computing 44,
279–303 (1990)

11. Johnson, D., Trick, M. (eds): Cliques, coloring, and Satisfiability: second DIMACS Implementation Chal-
lenge, DIMACS Series in Discrete Mathematics and Theoretical Computer Science. American Mathe-
matical Society, Providence, USA (1996)

12. Jeroslow, R.G., Wang, J.: Solving propositional satisfiability problems. Ann. Math. Artif. Intell. 1, 167–
187 (1990)

13. Joy, S., Mitchell, J., Borchers, B.: A branch and cut algorithm for MAX-SAT and weighted MAX-SAT.
In: Proceedings of the DIMACS Workshop on Satisfiability: theory and Applications, Rutgers University,
NJ, USA (1996)

14. de Klerk, E., Warners, J.P.: Semidefinite programming approaches for MAX-2-SAT and MAX-3-SAT:
computational perspectives. Technical report, Delft, The Netherlands (1998)

15. Li, C.M., Anbulagan, A.: Look-ahead versus look-back for satisfiability problems. In: Proceedings of
the 3rd International Conference on Principles of Constraint Programming, CP’97, Linz, Austria, LNCS
1330, pp. 341–355. Springer, Berlin (1997)

16. Loveland, D.W.: Automated Theorem Proving. A Logical Basis, volume 6 of Fundamental Studies in
Computer Science. North-Holland, Amsterdam (1978)

17. Mitchell, D., Selman, B., Levesque, H.: Hard and easy distributions of SAT problems. In: Proceedings
of the 10th National Conference on Artificial Intelligence, AAAI’92, San Jose, CA, USA, pp. 459–465.
AAAI Press (1992)

18. Niedermeier, R., Rossmanith, P.: New upper bounds for maximum satisfiability. J. Algorithms 36, 63–
88 (2000)

19. Pretolani, D.: Efficiency and stability of hypergraph SAT algorithms. In: Proceedings of the DIMACS
Challenge II Workshop. Rutgers University, NJ, USA (1993)

20. Resende, M., Pitsoulis, L., Pardalos, P.: Approximate solutions of weighted MAX-SAT problems using
GRASP. In: Du, D.-Z., Gu, J., Pardalos, P. (eds) Satisfiability Problem: theory and aplications, vol. 35
of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pp. 393–405. American
Mathematical Society, Providence, USA (1997)

21. Resende, M., Pitsoulis, L., Pardalos, P.: FORTRAN subroutines for computing approximate solutions of
weighted MAX-SAT problems using GRASP. Discrete Appl. Math. 100(1.2), 95–113 (2000)

22. Selman, B., Kautz, H., Cohen, B.: Noise Strategies for Improving Local Search. In: Proceedings of the
12th National Conference on Artificial Intelligence, AAAI’94, Seattle, WA, USA, pp. 337–343. AAAI
Press (1994)

23. Selman, B., Levesque, H., Mitchell, D.: A new method for solving hard satisfiability problems. In: Pro-
ceedings of the 10th National Conference on Artificial Intelligence, AAAI’92, San Jose/CA, USA, pp.
440–446. AAAI Press (1992)

24. Stützle, T., Hoos, H., Roli, A.: A review of the literature on local search algorithms for MAX-SAT.
Technical Report AIDA-01-02, FG Intellektik, FB Informatik, TU Darmstadt, Germany (2001)

25. Wallace, R., Freuder, E.: Comparative studies of constraint satisfaction and Davis-Putnam algorithms for
maximum satisfiability problems. In: Johnson, D., Trick, M. (eds.) Cliques, Coloring and Satisfiability,
vol. 26, pp. 587–615. American Mathematical Society. Providence, USA (1996)

26. Xing, Z., Zhang, W.: Efficient strategies for (weighted) maximum satisfiability. In: Proceedings of CP-
2004, pp. 690–705. Toronto, Canada (2004)

27. Zhang, H.: SATO: an efficient propositional prover. In: Proceedings of the Conference on Automated
Deduction (CADE-97), pp. 272–275 (1997)

28. Zhang, H., Shen, H., Manyà, F.: Exact algorithms for MAX-SAT. Electron. Notes Theor. Comput. Sci.
86(1) 190–203 (2003)

29. Zhang, L., Madigan, C., Moskewicz, M., Malik, S.: Efficient conflict driven learning in a Boolean satisfi-
ability solver. In: Proceedings of the International Conference on Computer Aided Design, ICCAD-2001,
San Jose/CA, USA, pp. 279–285 (2001)

123

	An efficient solver for weighted Max-SAT
	Abstract
	Introduction
	Preliminaries
	A basic solver for weighted Max-SAT
	Lazy: a new weighted Max-SAT solver
	Preprocessing
	Inference
	Lower bound computation
	Variable selection heuristic
	Data structures
	Experimental results
	Acknowledgements

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

